Fruit Image Classification Using Convolutional Neural Network
Kai Tai Tam

Definition

Ever since the beginning of human existence, fruit have always been considered as
healthy food in human diet. There are thousands of diets menu available online; regardless of the
purpose of the menus, almost all of them suggest including at least one type of fruits in the diet.
The nutritional values of fruits are irreplaceable for human. In fact, the United States spent $6.6
billion dollars on imported fruit in 2015, while they only spent $1.8 billion dollars in 1995 [1]. It
shows that American have started to pay more attention to their health, as well as the nutritional
value of fruits.

As there are many fruits available in the market today, consumers may not know every
fruit and their nutritional value. Nowadays, to learn more about anything you imagined, using a
search engine would be a smart choice. However, you would need to know the fruit’s name to
complete this task. It would definitely be more convenient for people, say consumers in the
market, to simply take a picture with their phone and it would know what fruit is in the picture.

Muresan and Oltean [2] conducted a study similar to this problem. They trained a
convolutional neural network model on a “dataset of images containing fruits” in order to
develop a model that was able to identify fruits from images. They collected data by taken
pictures themselves using a camera. They took them in a close distance and removed the
background using software technology. While they have an impressive result: achieving more
than 90% accuracy in the test set, their data would only be valid if the pictures were taken in a
certain angle and distance. An image of a grape, for example, was taken much closer than an
image of an orange. It is difficult for general people to utilize this model, because not many
people would pull out one particular grape, take a picture in a very close distance, and remove
their background. Therefore, their dataset was not applicable for my purpose. I will be
constructing a model that would recognize fruits based on pictures that a normal individual
would take on their cell phone.

The goal for this paper is to develop a supervised learning algorithm that is able to predict
a fruit based on a fruit image provided by users. To achieve such a goal, utilizing image
recognition technique is a great choice. As image recognition become more popular, it is possible
to train a model to recognize fruits.

As mentioned earlier, there was one big weakness in Muresan and Oltean’s study[2]:
their inputs were not able to generalize to public. In order to prevent this issue, I downloaded
fruit images from Google. In addition, I made sure each label had enough images, with no less
than 100 for each label, passing to the training model. I then resized and standardized those
images to 100x100 pixels, and randomly separated the dataset into three sets: training set,

validation set, and test set. I then passed the training set to Convolutional Neural Network in
order to train it to make predictions on fruit labels. I used accuracy to keep track how well the
model was learning. Accuracy score is a great options for this problem because it shows how
often the model predicted correctly. The greater the accuracy is, the higher probability that the
model makes accurate prediction. Accuracy was calculated by: the number of corrected labels
divided by the total labels. In other words, accuracy indicated the percentage of the model
predicting the correct answer.

Analysis

In order to train a model to recognize fruit images, it is essential to obtain fruit image data,
along with their names. I utilized an image extraction tool developed by Hardik Vasa [3] and
created my own dataset by searching images on Google. This tool downloaded images on
Google based on my keywords, and each fruit label had its own folder. I chose 22 fruits from a
list of fruits in Wikipedia [4] and searched for their images on Google using the image extraction
tool. Even though I tried as precise as possible to obtain images of fruits, there were images that
did not match what I searched for, such as searching for oranges when the image only showed
the orange color instead of the actual fruit.

orange’

Figure 1: Orange shown as Cartoon, and Color

There are approximately 100 images for each category, a total of 2,348 images. The
uniform distribution of the data made sure it was balanced and had enough data for validation set
and test set.

Fruit Frequency in counts

120 4

100 +

80 +

60

20+

apple
apricot
avocado
banana
carambola
cherry
granadilla
grape_red
grape_white
kaki
kiwi
lemon
lime
litchi
mango
nectarine
grange
papaya
pear
pineapple

omegranate
strawberry

According to the image above, Kiwi and banana have the most images, both having 120,
while Cherry has the fewest, with 99 images. However, the total image count for each label are

similar, making it roughly a uniform distribution. The mean of the labels is 106.7, and the
standard deviation is 8.0.

Some images can be potentially confusing to the model during training. To exemplify,
one of the major difference within each label is inconsistency of the number of fruits. Some
images can contain only one pineapples, while other pineapple images can contain dozens. It is
important for the model to learn whether there are only one pineapple or multiple pineapples, the
label still belongs to pineapple.

Figure 2: Left: image with multiple pineapple, Right: image with one pineapple

When humans identify an object, one of their strategies is to analyze their color, shape,
texture, etc. Similarly, Convolutional Neural Network is capable of doing such tasks, and that is
why I believe CNN is the right choice for this task. CNN is a deep learning algorithm that is able
to preserve spatial relationship between pixels [5]. It starts off with a convolutional layer, which
is square window, or kernel, usually 2x2 or 3x3. Each point in that window contains a weight.
For every possible pixels window, CNN would calculate the sum of the product of each
pixel*weight, and pass it to the activation function. In other words, when I pass on the images to
CNN, it computes values based on weights and scans through all possible pixels for that layer,
based on the size of the kernel. As it trains the model, the weight will be updated based on which
nodes are useful in making a correct prediction.

In addition, I also used max pooling layer in order to decrease the pixel size, after each
convolutional layer. The filter searched through all pixels similar to the process of convolutional
layer discussed above. Instead of calculating the weight, the filter selected the maximum value
among the window with the given size. Max pooling layer is capable to reduce the
dimensionality and only keep the most useful pixels. I also included dropout layers between the
layers. Dropout layer performed training with some nodes disabled for that layer in order to
prevent certain nodes from having too much weight. It is commonly used to reduce the risk of

overfitting. I also utilized global average pooling in order to pull the features that the model
found useful. Global average pooling layer reduced the dimension to 1 x 1 x depth, where depth
is the features the model found useful in predicting labels [6]. Moreover, I added a final layer
using “softmax” as the activation. “Softmax” is selected as the final activation because it is
structured such that the sum of the probability of each labels are 1.

In addition to building a convolutional neural network model from scratch, I also
implemented a pre-trained model in keras using transfer learning. Since training a CNN is time
consuming and does not always provide the expected result, using pre-trained model could save
us times and could potentially perform better result than the CNN model from scratch.

When training the model, I used categorical cross-entropy loss and accuracy in order to record
model performance. Categorical cross-entropy loss is best used when constructing a multi-class
classifier. It checks whether the model has done well when classifying a label by comparing to
the true label. It returns a lower value if the model has done well in predicting labels. Categorical
cross-entropy loss is perfect in this case because each image in the dataset can only belong to one
of the twenty two categories. If the model did a great job in predicting fruits, the score for
categorical cross-entropy would be low.

I use accuracy to keep track how well the model learned by looking at the accuracy on
training set, and how accurate the model was by checking the accuracy on the validation set. It is
calculated by the number of corrected labels divided by the total labels. The higher the accuracy
in validation set, the better the result in general. As the number of epochs increases, the accuracy
in training set and validation set will also increase. paying attention to the accuracy for validation
set is essential, as when the accuracy validation set decreases and increases in training set, it
maybe a sign of overfitting.

Since the most important concern for my model is to be accurate, it is important to show
that the model actually perform better than random guessing. Since there are 22 categories and
each category is distributed uniformly, the probability of predicting a correct answer is 1 in 22,
or 4.5%. The model should pass 4.5% to indicate that it has in fact learned, or picked up some
features, through training.

In addition to random guessing, a benchmark neural network model is also implemented
in order to test whether Convolutional Neural Network is a reasonable choice for this problem. I
first flatten the images in order to pass them to a neural network model I then added two hidden
layers, both with 256 nodes and “ReL.U” activation. After each hidden layer, I added a dropout
layer of 0.3 in order to prevent from overfitting. I lastly added a final layer which is the same as
the number of fruit labels, using “softmax” as the activation. It turned out the validation accuracy
for the benchmark model is 5.97%, and the architecture of the model is shown below:

Methodology

As mentioned in the definition section, there are images that do not match what I
intended to search for. To deal with this issue, I cleaned up the data manually by going through
all images and removing the images that did not contain the fruit at all. I did, however, leave the
images the same whether there are multiple fruits or one single fruit.

After the images were resized and standardized, | randomly distributed the dataset into
three sets: training set, validation set, and test set. The training set had 80% of the data, while
validation had 15% and the test set had the remaining 5%. This ratio is reasonable because given
the small size of the data, the model still have enough information for training, while 15% as
validation and 5% as final test for performance.

I then passed the training set that was resized to 100 x 100 pixels, to CNN, using “ReLU”
as the activation, and increased the depth to 16. I then used max pooling layer,with 2x2 filter and
stride of 2, in order to decrease the pixel size by half, after each convolutional layer. I also
included dropout layers between the layers to prevent overfitting, and global average pooling
layer to pull the features that the model found useful. Lastly, a final layer was added with 22
nodes and “softmax” as activation. The model architecture is shown below:

For the pre-trained model, I implemented a pre-trained model: VGG16, in order to test
whether a pre-trained model perform better than a model developed from scratch. VGG16 is a
CNN architecture that is “considered to be an excellent vision model,” and was “used to win the
ImageNet competition in 2014.”[7] The last five layers or all layers are set to be untrainable due
to our small dataset. I added one fully connected layer with 1024 nodes and “ReLU” as
activation, and a final layer with 22 nodes and “softmax” as activation.

I created some functions in order to further reduce and organize my code. For example,
“reading_images” took fruit image locations as input. It performed several tasks as follow:
resizing all images to 100x100x3 pixels, standardizing images to range 0 and 1, and storing each
image and label into two lists, treating them like variables and labels. This function not only
read .jpg file, but it also read .png and .jpeg files. Writing this function saved me tremendous
time when reading input from folders to folders.

In addition, I also created a function that helped me tune the model. This function took
whatever that was provided and train the model. This was very handy as I did not need to re-train
the model every time I plan to tune it.

There are many techniques when tuning the model. One of the most effective techniques
is grid search. Grid search is an “exhaustive searching through a manually specified subset of the
hyperparameter space of a learning algorithm.”[8] In my case, I chose to adjust learning rates to
0.1, 0.01, or 0.001, as well as two optimizers: RMSprop and SGD. In other words, there were six
different combinations as it generates a 2x3 table. I would use validation accuracy and select the
model with the highest value as the best model for training from scratch.

For tuning the pre-trained model, I utilize grid search again, but with different parameters:
instead of adjusting the optimizers, I set the optimizer to be RMSprop across all models and
restrict the number of trainable layers: none or last five layers. Similarly, the available learning
rates are 0.1,.0.01, and 0.001.

For tuning both models, I set the batch size to be 100 and maximum of epochs as 50. |
applied checkpoint and early stop, with patience of 5. Checkpoint stored the model with the
highest validation accuracy, while early stop would stop training when the validation accuracy
did not pass the past five training, or epochs.

The tuning result for the model trained from scratch is shown below:

RMSprop SGD
0.1 3.12% 35.51%
0.01 56.53% 5.68%
0.001 36.93% 5.68%

For the table above, RMSprop performance vary across all levels. However, the best
performance for RMSprop is significantly better than SGD optimizer, at 0.01 learning rates.
While RMSprop only predicted 3.12% accuracy at 0.1 learning rate, SGD performed its best
performance at such learning rate, with 35.51% accuracy. Moreover, when looking at SGD alone,
learning rate of 0.01 and 0.001 did not show a sign of learning as the validation accuracy did not
improve. On the other hand, RMSprop generally performed a much better task in terms of
validation accuracy when the learning rate is less than or equal to 0.01. Even though RMSprop
only performed 36.91% validation accuracy when learning rate was at 0.001, it was still better
than the best result of SGD.

The tuning result for the VGG16 pre-trained model is shown below:

Trainable: None

Trainable: Last 5

0.1 3.12% 3.98%
0.01 6.25% 4.55%
0.001 77.84% 4.55%

The pre-trained model performed worse than the model trained from scratch in general.
However, the best model recorded in the pre-trained model had the highest accuracy across all
models, with close to 78%. The pre-trained recorded the worst result at learning rate 0.1 for non
trainable group, while its best performance reached 77.84% accuracy on validation set when
learning rate is 0.001. On the other hand, when the model was enable to train the last five layers,
the model did not perform well at all, with the highest accuracy of 4.55%.

Results

Both models did a fantastic job on predicting fruits, the highest validation accuracy
recorded for model trained from scratch was 56.53%, while the highest recorded for pre-trained
model was 77.84%. The pre-trained model definitely performed better if correctly selecting the
learning rate and the number of trainable layers, with over 20% higher accuracy than the model
trained from scratch. Moreover, the final model also performed significantly better than the
benchmark model, with almost 72% improvement. Therefore, the pre-trained model with non-
trainable layers and learning rate of 0.001 is selected to be my final model.

The final model has a total of 23 layers, where 19 of them are set to be untrainable. All
the untrainable weights are used directly from VGG16. It shows that VGG16 does an excellent
job in generalizing the weights to unseen data. This is the beauty of transfer learning: the ability
to reuse the weights and still perform at a high level even when the input is truly new. The only
trainable layers are the last two layers, which are one fully connected layer, with 1024 nodes and
“ReLU” activation, and a final layer with 22 nodes and “softmax” activation.

Applying the model to the test set can test whether the model is robust enough for the
problem. Five percent of the data was pulled out and saved in the before the training process
begin. Out of 118 images, we recorded 98 correct prediction, or 83.1%. The model seems to do a
decent job on predicting the fruits in the test set, meaning that it is not overfitting and is robust
enough to generalize the data to unseen images.

-~

Figure 3: Granadilla predicted as granadilla Nectarine predicted as apricot

Convolutional neural network definitely did a great job in predicting fruits, as it is almost
74% more likely to get to the correct prediction compare to random guessing. In terms of the
benchmark model, CNN also clearly outperform regular neural network as well. With closed to
80% accuracy, I believe the model is significant enough to have solved the problem. In fact, If
the data had more images, I believe it would perform even better.

Conclusion

Given the research problem is to develop an algorithm that predicts a fruit based on a
fruit image provided by users, using images directly from Google might not be the perfect choice.
Therefore, to check whether using images from Google is able to generalize and to be robust
enough for the problem, I have taken several pictures myself and pass it to the model. The result
is shown below:

= il

Figure 4: Apple is predicted as Apple Banana is predicted as Banana

Figure 5: Orange is predicted as Kiwi Orange is predicted as orange

According to the self-taken image above, the model did a great job in predicting the fruit
in self-taken pictures. My model correctly predicted three fruits out of four images, which is 75%
accuracy. Since recognizing an image is never an easy task to do, it is fascinating to observe
what a computer can do with only training for less than 10 minutes. It might even be difficult to
human to identify 22 different objects if those objects are truly new to them. I am definitely
satisfied with the final model, as the solution fit my expectation and even showed on the self-
taken pictures.

There are some improvements that could be made for this project. One of the
improvements is to further adjust the learning rate. As we can see in the grid search, learning rate
varied a lot from 0.1 to 0.001, meaning that if we could further tune more precisely, we could
have got a even better result.

In addition, since this project demonstrated that using transfer learning can achieve a
better performance than a model trained from scratch, there are other pre-trained model
architecture that could be used, such as VGG19, that might perform even better than VGG16.
One technique that I would implement if I knew how it worked and the data allowed is the ability
to identify multiple fruits in one image. In real life, it is common that people take pictures with
more than one fruit. It would be awesome if my model was able to detect all fruits shown in one
single image. It is, however, very hard to train for this dataset, as this dataset is structured in a
way that only identify one label for one image.

Given there can be improvements for this model, I think a better solution will exist as I
cannot deny other pre-trained model when I haven’t even try them. Therefore, if I continue to
work on this project in future, I would definitely use the current best model as my new
benchmark.

To summarize, Convolutional neural network is a great approach in predicting a fruit
based on a fruit image. Downloading images from Google using Hardik Vasa’s tool definitely
saved me a tremendous of time for the dataset. The resizing and standardizing images also
speeded up the training time while not losing much of the detail in images. Convolutional neural
network definitely demonstrated its ability to handle images as the accuracy significantly
improved after the comparison between the benchmark model and the Convolutional neural
network approach.

Reference

https://fas.org/sgp/crs/misc/R1.34468.pdf
https://github.com/Horea94/Fruit-Images-Dataset
https://github.com/hardikvasa/google-images-download
https://simple.wikipedia.org/wiki/List of fruits

https://ujjwalkarn.me/2016/08/1 1/intuitive-explanation-convnets/
https://alexisbcook.github.io/2017/global-average-pooling-layers-for-object-localization/

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
https://en.wikipedia.org/wiki/Hyperparameter_optimization

N

https://fas.org/sgp/crs/misc/RL34468.pdf
https://github.com/Horea94/Fruit-Images-Dataset
https://github.com/hardikvasa/google-images-download
https://simple.wikipedia.org/wiki/List_of_fruits
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://alexisbcook.github.io/2017/global-average-pooling-layers-for-object-localization/
https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
https://en.wikipedia.org/wiki/Hyperparameter_optimization

	Fruit Image Classification Using Convolutional Neu
	Definition
	Analysis
	Methodology
	Results
	Conclusion
	Reference

